organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Butyl-3-(3,5-dimethoxyphenyl)-4-methoxy-2-(triisopropylsilyl)cyclopent-2-enone

Zhenyu Zhao,^{a,b} Yunhui Zhang,^a* Xinghua Jin^a and Xinjian Yang^b

^aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bChangzheng Hospital, Tianjin 300120, People's Republic of China

Correspondence e-mail: tju3106@163.com

Received 18 December 2007; accepted 20 January 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.124; data-to-parameter ratio = 21.8.

The title molecule, C₂₇H₄₄O₄Si, bears a bulky triisopropylsilyl group. The cyclopentene ring adopts an envelope conformation; the plane of its four coplanar C atoms and the benzene ring make a dihedral angle of $73.2 (6)^{\circ}$.

Related literature

For related literature, see: Allen et al. (1987); Frontier & Collison (2005); Geis & Schmalz (1998); Roberts et al. (2002); Shi et al. (2005); Tanaka & Fu (2001); Li et al. (2007, 2008).

Experimental

Crystal data

$C_{27}H_{44}O_4Si$	$V = 5331.1 (15) \text{ Å}^3$
$M_r = 460.71$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 39.294 (4) Å	$\mu = 0.12 \text{ mm}^{-1}$
$b = 8.3327 (10) \text{\AA}$	T = 113 (2) K
c = 29.274 (3) Å	$0.26 \times 0.24 \times 0.10 \text{ mm}$
$\beta = 146.207 \ (8)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.961, T_{\max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 291 parameters $wR(F^2) = 0.123$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^-$ S = 1.09 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ 6356 reflections

32688 measured reflections

 $R_{\rm int} = 0.051$

6356 independent reflections

5271 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2071).

References

- Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Frontier, A. J. & Collison, C. (2005). Tetrahedron, 61, 7577-7606.
- Geis, O. & Schmalz, H. G. (1998). Angew. Chem. Int. Ed. 37, 911-914. Li, Z., Moser, W. H., Deng, R. & Sun, L. (2007). J. Org. Chem. 72, 10254-10257.
- Li, Z., Moser, W. H., Zhang, W., Hua, C. & Sun, L. (2008). J. Organomet. Chem. 693, 361-367.
- Rigaku (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.70). Rigaku Americas Corporation, The Woodlands, Texas, USA.
- Roberts, S. M., Santoro, M. G. & Sickle, E. S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1735-1742.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, X., Gorin, D. J. & Toste, F. D. (2005). J. Am. Chem. Soc. 127, 5802-5803.
- Tanaka, K. & Fu, G. C. (2001). J. Am. Chem. Soc. 123, 11492-11493.

Acta Cryst. (2008). E64, o516 [doi:10.1107/S1600536808002055]

4-Butyl-3-(3,5-dimethoxyphenyl)-4-methoxy-2-(triisopropylsilyl)cyclopent-2-enone

Z. Zhao, Y. Zhang, X. Jin and X. Yang

Comment

Cyclopentenones are common structural units in bioactive natural products and useful building blocks. For a review see: (Roberts *et al.*, 2002). While various approaches such as the Nazarov reaction (Frontier & Collison, 2005), Pauson–Khand reaction (Geis & Schmalz, 1998), Rautenstrauch rearrangement reaction (Shi *et al.*, 2005), and intramolecular hydroacylation reaction (Tanaka & Fu, 2001) have been developed for construction of this important ring system. The title molecule was synthesized by [4 + 1] reaction of triisopropylsilyl vinyl ketene with Kobrich reagent (Li *et al.*, 2007; Li *et al.*, 2008).

The molecule structure of $C_{27}H_{44}O_4S_i$, is illustrated on Fig.1. The molecule consists of one cyclopentenone (C1–C5) and one phenyl ring (C6–C11). These rings are form the dihedral angle 73.2 (6)°. In the title molecule all bond lengths and bond angles are agree with published (Allen *et al.*, 1987).

Experimental

A solution of the tricarbonyl chromium complexed silyl vinylketene (0.5 mmol) and CH₂I₂ or Br₂CHCH₃ (0.75 mmol) in 5 ml of Et_2 O was cooled to 195 K. The *n*–*Bu*Li (0.75 mmol) was added within 10 min by syringe. After stirring at 195 K for 1 h, the solution was allowed to warm to room temperature and stirred overnight. The resulting solution was diluted with 30 ml of Et_2 O and extracted with saturated NaCl (3 × 10 ml). The aqueous layer was backextracted with Et_2 O (3 × 10 ml). The combined organic layer was dried over anhydrous Na₂SO₄. After filtration, the solvent was removed under reduced pressure and the residue was purified *via* flash chromatography (SiO₂) to afford the cyclopentenone compound (yield 78%, m.p. 332–333 K). ¹H NMR (CDCl₃): 6.46 (t, 1H), 6.36 (d, 2H), 3.79 (s, 6H), 3.24 (s, 3H), 2.66 (d, 1H), 2.42 (d, 1H), 1.68–1.63 (m, 1H), 1.44–1.39 (m, 1H), 1.35–1.12 (m, 7H), 0.98 (d, 9H), 0.94 (d, 9H), 0.84 (t, 3H) p.p.m.; ¹³C NMR (CDCl₃): 210.0, 183.3, 159.8, 143.0, 137.5, 106.2, 100.2, 87.0, 55.3, 50.7, 42.2, 36.9, 26.5, 23.0, 19.2, 19.1, 14.0, 11.4 p.p.m..

Refinement

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.95–1.00Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecule structure of title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres with the arbitrary radius.

4-Butyl-3-(3,5-dimethoxyphenyl)-4-methoxy-2-(triisopropylsilyl)cyclopent-2-enone

Crystal data	
C ₂₇ H ₄₄ O ₄ Si	$F_{000} = 2016$
$M_r = 460.71$	$D_{\rm x} = 1.148 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/c	Melting point: 332–333 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
a = 39.294 (4) Å	Cell parameters from 374 reflections
b = 8.3327 (10) Å	$\theta = 1.9 - 27.9^{\circ}$
c = 29.274 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 146.207 \ (8)^{\circ}$	T = 113 (2) K
$V = 5331.1 (15) \text{ Å}^3$	Block, colourless
<i>Z</i> = 8	$0.26\times0.24\times0.10~mm$

Data collection

Rigaku Saturn diffractometer	6356 independent reflections
Radiation source: rotating anode	5271 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.051$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^{\circ}$
T = 113(2) K	$\theta_{\min} = 1.9^{\circ}$
ω scans	$h = -51 \rightarrow 49$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.961, T_{\max} = 0.988$	<i>l</i> = −37→38
32688 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.049$	$w = 1/[\sigma^2(F_0^2) + (0.0613P)^2 + 2.2212P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.123$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
6356 reflections	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
291 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Drimory atom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0029 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor *wR* and goodness of fit S are based on F^2 , conventional R-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Si1	0.060076 (17)	0.46916 (5)	0.45150 (2)	0.01708 (12)
01	0.14533 (5)	0.38982 (14)	0.63443 (6)	0.0260 (3)
02	0.22955 (5)	0.04752 (12)	0.61756 (6)	0.0191 (2)
O3	0.13563 (5)	0.06140 (13)	0.35883 (7)	0.0249 (3)
O4	0.21072 (5)	0.59302 (13)	0.45866 (7)	0.0257 (3)
C1	0.16047 (6)	0.32410 (18)	0.61599 (8)	0.0185 (3)
C2	0.13558 (6)	0.35913 (17)	0.54188 (8)	0.0162 (3)
C3	0.17437 (6)	0.29104 (16)	0.55487 (8)	0.0148 (3)
C4	0.22794 (6)	0.20168 (17)	0.63719 (8)	0.0166 (3)
C5	0.20858 (6)	0.19464 (18)	0.66571 (8)	0.0198 (3)
H5A	0.1914	0.0881	0.6542	0.024*
H5B	0.2437	0.2170	0.7253	0.024*
C6	0.17257 (6)	0.30081 (16)	0.50223 (8)	0.0153 (3)
C7	0.15364 (6)	0.16823 (17)	0.45500 (8)	0.0171 (3)
H7	0.1411	0.0716	0.4555	0.021*
C8	0.15356 (6)	0.18095 (17)	0.40790 (8)	0.0184 (3)
C9	0.17267 (6)	0.32121 (18)	0.40742 (8)	0.0192 (3)
Н9	0.1727	0.3280	0.3751	0.023*
C10	0.19146 (6)	0.44980 (17)	0.45446 (9)	0.0179 (3)
C11	0.19134 (6)	0.44033 (17)	0.50188 (8)	0.0179 (3)
H11	0.2042	0.5297	0.5339	0.021*
C12	0.11224 (8)	-0.08178 (19)	0.35246 (11)	0.0313 (4)
H12A	0.1013	-0.1574	0.3159	0.038*

H12B	0.0758	-0.0566	0.3300	0.038*
H12C	0.1435	-0.1301	0.4070	0.038*
C13	0.21186 (7)	0.6089 (2)	0.41147 (10)	0.0250 (3)
H13A	0.2264	0.7164	0.4195	0.030*
H13B	0.1705	0.5931	0.3532	0.030*
H13C	0.2394	0.5282	0.4292	0.030*
C14	0.27015 (7)	-0.06577 (18)	0.68287 (9)	0.0252 (3)
H14A	0.2682	-0.1668	0.6636	0.030*
H14B	0.2582	-0.0848	0.7014	0.030*
H14C	0.3120	-0.0237	0.7286	0.030*
C15	0.28884 (6)	0.29106 (17)	0.69819 (8)	0.0180 (3)
H15A	0.3219	0.2273	0.7494	0.022*
H15B	0.2975	0.2968	0.6746	0.022*
C16	0.29095 (7)	0.46110 (18)	0.72010 (9)	0.0214 (3)
H16A	0.2767	0.4582	0.7364	0.026*
H16B	0.2623	0.5297	0.6707	0.026*
C17	0.35466 (7)	0.53686 (19)	0.78964 (9)	0.0233 (3)
H17A	0.3534	0.6409	0.8046	0.028*
H17B	0.3837	0.4662	0.8384	0.028*
C18	0.37830 (8)	0.5645 (2)	0.76797 (11)	0.0303 (4)
H18A	0.4193	0.6120	0.8151	0.036*
H18B	0.3506	0.6374	0.7209	0.036*
H18C	0.3803	0.4618	0.7539	0.036*
C19	0.07163 (7)	0.69311 (19)	0.47085 (10)	0.0267 (3)
H19	0.0304	0.7438	0.4214	0.032*
C20	0.11217 (9)	0.7634 (2)	0.47859 (13)	0.0409 (5)
H20A	0.0967	0.7301	0.4313	0.049*
H20B	0.1542	0.7244	0.5293	0.049*
H20C	0.1117	0.8808	0.4801	0.049*
C21	0.09602 (12)	0.7453 (2)	0.54452 (14)	0.0511 (6)
H21A	0.0701	0.7004	0.5398	0.061*
H21B	0.0956	0.8627	0.5460	0.061*
H21C	0.1380	0.7064	0.5951	0.061*
C22	0.01096 (6)	0.39689 (19)	0.44564 (9)	0.0225 (3)
H22	0.0294	0.4441	0.4944	0.027*
C23	0.01070 (8)	0.2140 (2)	0.45283 (11)	0.0313 (4)
H23A	0.0529	0.1748	0.5017	0.038*
H23B	-0.0103	0.1617	0.4038	0.038*
H23C	-0.0107	0.1890	0.4576	0.038*
C24	-0.05484 (7)	0.4611 (2)	0.37011 (10)	0.0308 (4)
H24A	-0.0540	0.5777	0.3666	0.037*
H24B	-0.0760	0.4359	0.3751	0.037*
H24C	-0.0765	0.4107	0.3204	0.037*
C25	0.02599 (7)	0.4266 (2)	0.35538 (9)	0.0249 (3)
H25	0.0600	0.4375	0.3707	0.030*
C26	0.00158 (8)	0.2545 (2)	0.32357 (10)	0.0353 (4)
H26A	0.0334	0.1784	0.3684	0.042*
H26B	-0.0097	0.2341	0.2791	0.042*
H26C	-0.0345	0.2413	0.3029	0.042*

C27	-0.02368 (8)	0.5469 (3)	0.28563 (10)	0.0382 (5)
H27A	-0.0078	0.6564	0.3063	0.046*
H27B	-0.0596	0.5339	0.2653	0.046*
H27C	-0.0353	0.5271	0.2408	0.046*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.01359 (19)	0.0209 (2)	0.01541 (19)	0.00036 (15)	0.01180 (17)	0.00101 (15)
01	0.0252 (6)	0.0377 (7)	0.0214 (5)	0.0034 (5)	0.0206 (5)	0.0003 (5)
02	0.0233 (5)	0.0154 (5)	0.0166 (5)	0.0039 (4)	0.0162 (5)	0.0030 (4)
03	0.0357 (6)	0.0215 (6)	0.0267 (6)	-0.0029 (5)	0.0277 (5)	-0.0047 (4)
O4	0.0393 (6)	0.0213 (6)	0.0349 (6)	-0.0050 (5)	0.0342 (6)	-0.0016 (5)
C1	0.0163 (6)	0.0234 (7)	0.0148 (6)	-0.0019 (6)	0.0127 (6)	-0.0005 (5)
C2	0.0156 (6)	0.0189 (7)	0.0144 (6)	-0.0024 (5)	0.0125 (6)	-0.0018 (5)
C3	0.0156 (6)	0.0145 (7)	0.0134 (6)	-0.0025 (5)	0.0119 (6)	-0.0019 (5)
C4	0.0179 (7)	0.0164 (7)	0.0151 (6)	0.0014 (5)	0.0137 (6)	0.0007 (5)
C5	0.0198 (7)	0.0246 (8)	0.0158 (7)	0.0015 (6)	0.0149 (6)	0.0026 (6)
C6	0.0129 (6)	0.0188 (7)	0.0129 (6)	0.0031 (5)	0.0105 (6)	0.0027 (5)
C7	0.0175 (6)	0.0166 (7)	0.0166 (6)	0.0015 (5)	0.0140 (6)	0.0022 (5)
C8	0.0191 (7)	0.0181 (7)	0.0169 (6)	0.0025 (5)	0.0148 (6)	0.0000 (5)
C9	0.0208 (7)	0.0236 (8)	0.0174 (7)	0.0043 (6)	0.0167 (6)	0.0039 (6)
C10	0.0184 (7)	0.0186 (7)	0.0188 (7)	0.0017 (5)	0.0158 (6)	0.0034 (5)
C11	0.0190 (7)	0.0195 (7)	0.0170 (7)	-0.0011 (5)	0.0153 (6)	-0.0010 (5)
C12	0.0424 (10)	0.0223 (8)	0.0343 (9)	-0.0074 (7)	0.0328 (9)	-0.0087 (7)
C13	0.0290 (8)	0.0302 (9)	0.0269 (8)	-0.0033 (7)	0.0253 (7)	0.0012 (6)
C14	0.0263 (8)	0.0210 (8)	0.0208 (7)	0.0051 (6)	0.0182 (7)	0.0056 (6)
C15	0.0157 (6)	0.0201 (7)	0.0152 (6)	0.0019 (5)	0.0123 (6)	0.0005 (5)
C16	0.0206 (7)	0.0216 (8)	0.0209 (7)	-0.0004 (6)	0.0171 (7)	-0.0030 (6)
C17	0.0223 (7)	0.0230 (8)	0.0200 (7)	-0.0025 (6)	0.0167 (7)	-0.0038 (6)
C18	0.0303 (9)	0.0297 (9)	0.0350 (9)	-0.0028 (7)	0.0279 (8)	-0.0012 (7)
C19	0.0281 (8)	0.0224 (8)	0.0327 (8)	0.0022 (6)	0.0258 (8)	0.0034 (6)
C20	0.0494 (11)	0.0273 (10)	0.0606 (13)	-0.0089 (8)	0.0484 (11)	-0.0047 (9)
C21	0.0878 (17)	0.0259 (10)	0.0725 (15)	-0.0118 (10)	0.0728 (15)	-0.0132 (10)
C22	0.0166 (7)	0.0304 (9)	0.0206 (7)	-0.0015 (6)	0.0155 (6)	-0.0009 (6)
C23	0.0285 (8)	0.0318 (9)	0.0371 (9)	-0.0053 (7)	0.0279 (8)	-0.0001 (7)
C24	0.0193 (7)	0.0450 (10)	0.0288 (8)	0.0033 (7)	0.0201 (7)	0.0044 (7)
C25	0.0162 (7)	0.0404 (10)	0.0163 (7)	0.0005 (6)	0.0131 (6)	0.0019 (6)
C26	0.0277 (9)	0.0515 (11)	0.0261 (8)	-0.0100 (8)	0.0222 (8)	-0.0146 (8)
C27	0.0228 (8)	0.0643 (13)	0.0210 (8)	0.0104 (8)	0.0170 (8)	0.0124 (8)

Geometric parameters (Å, °)

Si1—C22 1.8886 (15) C15—H15A	0.9900
Si1—C25 1.8902 (16) C15—H15B	0.9900
Si1—C19 1.8926 (17) C16—C17	1.529 (2)
Si1—C2 1.8962 (15) C16—H16A	0.9900
O1—C1 1.2161 (17) C16—H16B	0.9900
O2—C14 1.4220 (17) C17—C18	1.516 (5)

O2—C4	1.4299 (17)	C17—H17A	0.9900
O3—C8	1.3674 (17)	С17—Н17В	0.9900
O3—C12	1.4206 (19)	C18—H18A	0.9800
O4—C10	1.3630 (17)	C18—H18B	0.9800
O4—C13	1.425 (4)	C18—H18C	0.9800
C1—C2	1.4905 (19)	C19—C21	1.525 (2)
C1—C5	1.511 (2)	C19—C20	1.527 (6)
C2—C3	1.351 (4)	С19—Н19	1.0000
C3—C6	1.485 (4)	C20—H20A	0.9800
C3—C4	1.5366 (19)	С20—Н20В	0.9800
C4—C5	1.528 (4)	С20—Н20С	0.9800
C4—C15	1.5384 (19)	C21—H21A	0.9800
С5—Н5А	0.9900	C21—H21B	0.9800
С5—Н5В	0.9900	C21—H21C	0.9800
C6—C11	1.381 (2)	C22—C24	1.536 (2)
C6—C7	1.4057 (19)	C22—C23	1.540 (2)
С7—С8	1.380 (2)	C22—H22	1.0000
С7—Н7	0.9500	С23—Н23А	0.9800
C8—C9	1.396 (2)	С23—Н23В	0.9800
C9—C10	1.378 (2)	С23—Н23С	0.9800
С9—Н9	0.9500	C24—H24A	0.9800
C10—C11	1.394 (2)	C24—H24B	0.9800
C11—H11	0.9500	C24—H24C	0.9800
C12—H12A	0.9800	C25—C26	1.536 (2)
C12—H12B	0.9800	C25—C27	1.536 (2)
C12—H12C	0.9800	C25—H25	1.0000
C13—H13A	0.9800	С26—Н26А	0.9800
C13—H13B	0.9800	C26—H26B	0.9800
C13—H13C	0.9800	C26—H26C	0.9800
C14—H14A	0.9800	С27—Н27А	0.9800
C14—H14B	0.9800	С27—Н27В	0.9800
C14—H14C	0.9800	С27—Н27С	0.9800
C15—C16	1.529 (2)		
C22—Si1—C25	113 49 (7)	C15—C16—C17	113 52 (12)
$C_{22} = S_{11} = C_{19}$	108 33 (7)	C_{15} C_{16} H_{16A}	108.9
$C_{22} = S_{11} = C_{19}$	109.11 (7)	C17 - C16 - H16A	108.9
C_{22} Sil C_{23}	105.57 (6)	C_{15} C_{16} H_{16B}	108.9
$C_{22} = S_{11} = C_{22}$	109.57(0) 109.74(7)	C17—C16—H16B	108.9
C_{23} S_{11} C_{2}	109.74(7)	H_{16A} C_{16} H_{16B}	107.7
$C_{1}^{1} - C_{2}^{1} - C_{4}^{1}$	110.50(7) 115.53(11)	C18 - C17 - C16	113 50 (13)
$C_{8} = 0^{3} = C_{12}^{12}$	117.52 (12)	C_{18} C_{17} H_{17A}	108.8
$C_{10} - O_{4} - C_{13}$	117.52 (12)	C16 - C17 - H17A	108.8
01-01-02	125.91 (13)	C18 - C17 - H17B	108.8
01 - 01 - 02	125.91(13) 125.15(13)	C16—C17—H17B	108.8
$C_1 = C_2$	108.93 (12)	H17A_C17_H17B	107.7
$C_2 = C_1 = C_3$	106.60 (12)	C17_C18_H18A	109.5
C_{3} C_{2} C_{1} C_{3} C_{2} S_{11}	133 35 (11)	C17_C18_H18B	109.5
$C_{1} = C_{2} = S_{11}$	110.02 (10)	H18A - C18 - H18B	109.5
$C_1 - C_2 - S_{11}$	117.72(10) 127.05(12)	птод—Сто—птор С17 С18 Н19С	109.5
02-03-00	127.93 (12)	U1/U10	109.5

C2—C3—C4	113.55 (12)	H18A—C18—H18C	109.5
C6—C3—C4	118.40 (11)	H18B—C18—H18C	109.5
O2—C4—C5	113.17 (11)	C21—C19—C20	109.20 (16)
O2—C4—C3	105.40 (10)	C21—C19—Si1	114.66 (12)
C5—C4—C3	102.71 (11)	C20-C19-Si1	112.57 (12)
O2—C4—C15	110.85 (11)	С21—С19—Н19	106.6
C5—C4—C15	112.62 (11)	С20—С19—Н19	106.6
C3—C4—C15	111.59 (11)	Si1—C19—H19	106.6
C1—C5—C4	103.81 (11)	С19—С20—Н20А	109.5
C1—C5—H5A	111.0	С19—С20—Н20В	109.5
C4—C5—H5A	111.0	H20A—C20—H20B	109.5
C1—C5—H5B	111.0	С19—С20—Н20С	109.5
C4—C5—H5B	111.0	H20A—C20—H20C	109.5
H5A—C5—H5B	109.0	H20B-C20-H20C	109.5
C11—C6—C7	120.24 (13)	С19—С21—Н21А	109.5
C11—C6—C3	119.24 (12)	C19—C21—H21B	109.5
C7—C6—C3	120.49 (12)	H21A—C21—H21B	109.5
C8—C7—C6	118.83 (13)	C19—C21—H21C	109.5
С8—С7—Н7	120.6	H21A—C21—H21C	109.5
С6—С7—Н7	120.6	H21B—C21—H21C	109.5
O3—C8—C7	124.39 (13)	C24—C22—C23	110.32 (13)
03—C8—C9	114.29 (12)	C24—C22—Si1	112.98 (11)
C7—C8—C9	121.32 (13)	C23—C22—Si1	115.18 (11)
C10—C9—C8	119.15 (13)	С24—С22—Н22	105.9
С10—С9—Н9	120.4	C23—C22—H22	105.9
С8—С9—Н9	120.4	Si1—C22—H22	105.9
O4—C10—C9	124.54 (13)	C22—C23—H23A	109.5
O4—C10—C11	114.90 (13)	С22—С23—Н23В	109.5
C9—C10—C11	120.56 (13)	H23A—C23—H23B	109.5
C6—C11—C10	119.91 (13)	С22—С23—Н23С	109.5
C6—C11—H11	120.0	H23A—C23—H23C	109.5
C10-C11-H11	120.0	H23B—C23—H23C	109.5
O3—C12—H12A	109.5	C22—C24—H24A	109.5
O3—C12—H12B	109.5	C22—C24—H24B	109.5
H12A—C12—H12B	109.5	H24A—C24—H24B	109.5
O3—C12—H12C	109.5	C22—C24—H24C	109.5
H12A—C12—H12C	109.5	H24A—C24—H24C	109.5
H12B—C12—H12C	109.5	H24B—C24—H24C	109.5
O4—C13—H13A	109.5	C26—C25—C27	109.87 (14)
O4—C13—H13B	109.5	C26—C25—Si1	113.00 (11)
H13A—C13—H13B	109.5	C27—C25—Si1	113.70 (12)
O4—C13—H13C	109.5	С26—С25—Н25	106.6
H13A—C13—H13C	109.5	С27—С25—Н25	106.6
H13B-C13-H13C	109.5	Si1—C25—H25	106.6
O2-C14-H14A	109.5	C25—C26—H26A	109.5
O2—C14—H14B	109.5	C25—C26—H26B	109.5
H14A—C14—H14B	109.5	H26A—C26—H26B	109.5
O2—C14—H14C	109.5	C25—C26—H26C	109.5
H14A—C14—H14C	109.5	H26A—C26—H26C	109.5

H14B—C14—H14C	109.5	H26B—C26—H26C	109.5
C16—C15—C4	115.18 (12)	С25—С27—Н27А	109.5
C16—C15—H15A	108.5	С25—С27—Н27В	109.5
C4—C15—H15A	108.5	H27A—C27—H27B	109.5
C16-C15-H15B	108.5	С25—С27—Н27С	109.5
C4—C15—H15B	108.5	H27A—C27—H27C	109.5
H15A—C15—H15B	107.5	H27B—C27—H27C	109.5
O1—C1—C2—C3	165.05 (14)	C6—C7—C8—O3	-179.32 (13)
C5—C1—C2—C3	-14.12 (16)	C6—C7—C8—C9	1.0 (2)
01—C1—C2—Si1	-18.4 (2)	O3—C8—C9—C10	179.69 (12)
C5—C1—C2—Si1	162.46 (10)	C7—C8—C9—C10	-0.6 (2)
C22—Si1—C2—C3	139.93 (15)	C13—O4—C10—C9	-0.6 (2)
C25—Si1—C2—C3	17.28 (17)	C13—O4—C10—C11	179.85 (13)
C19—Si1—C2—C3	-103.13 (15)	C8—C9—C10—O4	-179.59 (13)
C22—Si1—C2—C1	-35.56 (13)	C8—C9—C10—C11	-0.1 (2)
C25—Si1—C2—C1	-158.21 (11)	C7—C6—C11—C10	0.1 (2)
C19—Si1—C2—C1	81.38 (12)	C3—C6—C11—C10	178.29 (13)
C1—C2—C3—C6	-175.35 (13)	O4—C10—C11—C6	179.88 (12)
Si1—C2—C3—C6	8.7 (2)	C9—C10—C11—C6	0.3 (2)
C1—C2—C3—C4	1.09 (16)	O2-C4-C15-C16	177.07 (11)
Si1—C2—C3—C4	-174.83 (11)	C5-C4-C15-C16	-55.00 (16)
C14—O2—C4—C5	-59.75 (15)	C3—C4—C15—C16	59.92 (15)
C14—O2—C4—C3	-171.23 (11)	C4—C15—C16—C17	171.84 (12)
C14—O2—C4—C15	67.88 (15)	C15-C16-C17-C18	64.92 (17)
C2—C3—C4—O2	130.51 (12)	C22—Si1—C19—C21	53.07 (15)
C6—C3—C4—O2	-52.67 (15)	C25—Si1—C19—C21	177.07 (14)
C2—C3—C4—C5	11.79 (15)	C2—Si1—C19—C21	-62.15 (15)
C6—C3—C4—C5	-171.39 (12)	C22—Si1—C19—C20	178.71 (12)
C2—C3—C4—C15	-109.09 (14)	C25—Si1—C19—C20	-57.29 (14)
C6—C3—C4—C15	67.72 (15)	C2—Si1—C19—C20	63.48 (14)
O1—C1—C5—C4	-158.20 (14)	C25—Si1—C22—C24	-54.04 (14)
C2—C1—C5—C4	20.98 (15)	C19—Si1—C22—C24	67.30 (13)
O2—C4—C5—C1	-132.07 (12)	C2—Si1—C22—C24	-174.26 (11)
C3—C4—C5—C1	-18.94 (14)	C25—Si1—C22—C23	73.98 (13)
C15—C4—C5—C1	101.23 (13)	C19—Si1—C22—C23	-164.68 (12)
C2—C3—C6—C11	75.56 (19)	C2—Si1—C22—C23	-46.23 (13)
C4—C3—C6—C11	-100.74 (15)	C22—Si1—C25—C26	-46.17 (13)
C2—C3—C6—C7	-106.22 (17)	C19—Si1—C25—C26	-167.07 (11)
C4—C3—C6—C7	77.48 (16)	C2—Si1—C25—C26	71.66 (12)
C11—C6—C7—C8	-0.7 (2)	C22—Si1—C25—C27	79.96 (13)
C3—C6—C7—C8	-178.91 (12)	C19—Si1—C25—C27	-40.94 (14)
C12—O3—C8—C7	3.8 (2)	C2—Si1—C25—C27	-162.22 (11)
C12—O3—C8—C9	-176.46 (13)		

